Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phytochrome-mediated photoperiod perception, shoot growth, glutamine, calcium, and protein phosphorylation influence the activity of the poplar bark storage protein gene promoter (bspA).

Identifieur interne : 004668 ( Main/Exploration ); précédent : 004667; suivant : 004669

Phytochrome-mediated photoperiod perception, shoot growth, glutamine, calcium, and protein phosphorylation influence the activity of the poplar bark storage protein gene promoter (bspA).

Auteurs : B. Zhu [États-Unis] ; G D Coleman

Source :

RBID : pubmed:11351097

Descripteurs français

English descriptors

Abstract

In poplars (Populus), bspA encodes a 32-kD bark storage protein that accumulates in the inner bark of plants exposed to either short-day (SD) photoperiods or elevated levels of nitrogen. In this study, poplars transformed with a chimeric gene consisting of the bspA promoter fused to beta-glucuronidase (uidA) were used to investigate the transcriptional regulation of the bspA promoter. Photoperiodic activation of the bspA promoter was shown to involve perception by phytochrome and likely involves both a low fluence response and a parallel very low fluence response pathway. Activity of the bspA promoter was also influenced by shoot growth. High levels of bspA expression usually occur in the bark of plants during SD but not long day or SD with a night break. When growth was inhibited under growth permissive photoperiods (SD with night break) levels of bark beta-glucuronidase (GUS) activity increased. Stimulating shoot growth in plants treated with SD inhibited SD-induced increases in bark GUS activity. Because changes in photoperiod and growth also alter carbon and nitrogen partitioning, the role of carbon and nitrogen metabolites in modulating the activity of the bspA promoter were investigated by treating excised stems with amino acids or NH4NO3 with or without sucrose. Treatment with either glutamine or NH4NO3 resulted in increased stem GUS activity. The addition of sucrose with either glutamine or NH4NO3 resulted in synergistic induction of GUS, whereas sucrose alone had no effect. Glutamine plus sucrose induction of GUS activity was inhibited by EGTA, okadaic acid, or K-252A. Inhibition by EGTA was partially relieved by the addition of Ca2+. The Ca2+ ionophore, ionomycin, also induced GUS activity in excised shoots. These results indicate that transcriptional activation of bspA is complex. It is likely that SD activation of bspA involves perception by phytochrome coupled to changes in growth. These growth changes may then alter carbon and nitrogen partitioning that somehow signals bspA induction by a yet undefined mechanism that involves carbon and nitrogen metabolites, Ca2+, and protein phosphorylation/dephosphorylation.

DOI: 10.1104/pp.126.1.342
PubMed: 11351097
PubMed Central: PMC102308


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phytochrome-mediated photoperiod perception, shoot growth, glutamine, calcium, and protein phosphorylation influence the activity of the poplar bark storage protein gene promoter (bspA).</title>
<author>
<name sortKey="Zhu, B" sort="Zhu, B" uniqKey="Zhu B" first="B" last="Zhu">B. Zhu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Natural Resource Sciences and Landscape Architecture and Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland 20742, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Resource Sciences and Landscape Architecture and Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland 20742</wicri:regionArea>
<orgName type="university">Université du Maryland</orgName>
<placeName>
<settlement type="city">College Park (Maryland)</settlement>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coleman, G D" sort="Coleman, G D" uniqKey="Coleman G" first="G D" last="Coleman">G D Coleman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11351097</idno>
<idno type="pmid">11351097</idno>
<idno type="pmc">PMC102308</idno>
<idno type="doi">10.1104/pp.126.1.342</idno>
<idno type="wicri:Area/Main/Corpus">004777</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004777</idno>
<idno type="wicri:Area/Main/Curation">004777</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004777</idno>
<idno type="wicri:Area/Main/Exploration">004777</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phytochrome-mediated photoperiod perception, shoot growth, glutamine, calcium, and protein phosphorylation influence the activity of the poplar bark storage protein gene promoter (bspA).</title>
<author>
<name sortKey="Zhu, B" sort="Zhu, B" uniqKey="Zhu B" first="B" last="Zhu">B. Zhu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Natural Resource Sciences and Landscape Architecture and Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland 20742, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Resource Sciences and Landscape Architecture and Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland 20742</wicri:regionArea>
<orgName type="university">Université du Maryland</orgName>
<placeName>
<settlement type="city">College Park (Maryland)</settlement>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coleman, G D" sort="Coleman, G D" uniqKey="Coleman G" first="G D" last="Coleman">G D Coleman</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Calcium (metabolism)</term>
<term>Glutamine (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Photoperiod (MeSH)</term>
<term>Phytochrome (physiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Shoots (growth & development)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (MeSH)</term>
<term>Azote (métabolisme)</term>
<term>Calcium (métabolisme)</term>
<term>Glutamine (métabolisme)</term>
<term>Phosphorylation (MeSH)</term>
<term>Photopériode (MeSH)</term>
<term>Phytochrome (physiologie)</term>
<term>Pousses de plante (croissance et développement)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcium</term>
<term>Glutamine</term>
<term>Nitrogen</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Phytochrome</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Pousses de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Calcium</term>
<term>Glutamine</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Phytochrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Phosphorylation</term>
<term>Photoperiod</term>
<term>Promoter Regions, Genetic</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Phosphorylation</term>
<term>Photopériode</term>
<term>Régions promotrices (génétique)</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In poplars (Populus), bspA encodes a 32-kD bark storage protein that accumulates in the inner bark of plants exposed to either short-day (SD) photoperiods or elevated levels of nitrogen. In this study, poplars transformed with a chimeric gene consisting of the bspA promoter fused to beta-glucuronidase (uidA) were used to investigate the transcriptional regulation of the bspA promoter. Photoperiodic activation of the bspA promoter was shown to involve perception by phytochrome and likely involves both a low fluence response and a parallel very low fluence response pathway. Activity of the bspA promoter was also influenced by shoot growth. High levels of bspA expression usually occur in the bark of plants during SD but not long day or SD with a night break. When growth was inhibited under growth permissive photoperiods (SD with night break) levels of bark beta-glucuronidase (GUS) activity increased. Stimulating shoot growth in plants treated with SD inhibited SD-induced increases in bark GUS activity. Because changes in photoperiod and growth also alter carbon and nitrogen partitioning, the role of carbon and nitrogen metabolites in modulating the activity of the bspA promoter were investigated by treating excised stems with amino acids or NH4NO3 with or without sucrose. Treatment with either glutamine or NH4NO3 resulted in increased stem GUS activity. The addition of sucrose with either glutamine or NH4NO3 resulted in synergistic induction of GUS, whereas sucrose alone had no effect. Glutamine plus sucrose induction of GUS activity was inhibited by EGTA, okadaic acid, or K-252A. Inhibition by EGTA was partially relieved by the addition of Ca2+. The Ca2+ ionophore, ionomycin, also induced GUS activity in excised shoots. These results indicate that transcriptional activation of bspA is complex. It is likely that SD activation of bspA involves perception by phytochrome coupled to changes in growth. These growth changes may then alter carbon and nitrogen partitioning that somehow signals bspA induction by a yet undefined mechanism that involves carbon and nitrogen metabolites, Ca2+, and protein phosphorylation/dephosphorylation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11351097</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>07</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>126</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2001</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Phytochrome-mediated photoperiod perception, shoot growth, glutamine, calcium, and protein phosphorylation influence the activity of the poplar bark storage protein gene promoter (bspA).</ArticleTitle>
<Pagination>
<MedlinePgn>342-51</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>In poplars (Populus), bspA encodes a 32-kD bark storage protein that accumulates in the inner bark of plants exposed to either short-day (SD) photoperiods or elevated levels of nitrogen. In this study, poplars transformed with a chimeric gene consisting of the bspA promoter fused to beta-glucuronidase (uidA) were used to investigate the transcriptional regulation of the bspA promoter. Photoperiodic activation of the bspA promoter was shown to involve perception by phytochrome and likely involves both a low fluence response and a parallel very low fluence response pathway. Activity of the bspA promoter was also influenced by shoot growth. High levels of bspA expression usually occur in the bark of plants during SD but not long day or SD with a night break. When growth was inhibited under growth permissive photoperiods (SD with night break) levels of bark beta-glucuronidase (GUS) activity increased. Stimulating shoot growth in plants treated with SD inhibited SD-induced increases in bark GUS activity. Because changes in photoperiod and growth also alter carbon and nitrogen partitioning, the role of carbon and nitrogen metabolites in modulating the activity of the bspA promoter were investigated by treating excised stems with amino acids or NH4NO3 with or without sucrose. Treatment with either glutamine or NH4NO3 resulted in increased stem GUS activity. The addition of sucrose with either glutamine or NH4NO3 resulted in synergistic induction of GUS, whereas sucrose alone had no effect. Glutamine plus sucrose induction of GUS activity was inhibited by EGTA, okadaic acid, or K-252A. Inhibition by EGTA was partially relieved by the addition of Ca2+. The Ca2+ ionophore, ionomycin, also induced GUS activity in excised shoots. These results indicate that transcriptional activation of bspA is complex. It is likely that SD activation of bspA involves perception by phytochrome coupled to changes in growth. These growth changes may then alter carbon and nitrogen partitioning that somehow signals bspA induction by a yet undefined mechanism that involves carbon and nitrogen metabolites, Ca2+, and protein phosphorylation/dephosphorylation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>B</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural Resource Sciences and Landscape Architecture and Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland 20742, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coleman</LastName>
<ForeName>G D</ForeName>
<Initials>GD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C085168">bspA protein, Populus deltoides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0RH81L854J</RegistryNumber>
<NameOfSubstance UI="D005973">Glutamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11121-56-5</RegistryNumber>
<NameOfSubstance UI="D010834">Phytochrome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005973" MajorTopicYN="N">Glutamine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017440" MajorTopicYN="Y">Photoperiod</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010834" MajorTopicYN="N">Phytochrome</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="Y">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11351097</ArticleId>
<ArticleId IdType="pmc">PMC102308</ArticleId>
<ArticleId IdType="doi">10.1104/pp.126.1.342</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 1995 Nov;7(11):1963-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8535146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1997 Oct;203(2):237-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9362569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Apr;18(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10341439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:101-125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Oct;106(2):567-574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Nov;97(3):1017-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13965-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Dec;20(6):1195-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1989 Oct;13(4):347-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2491661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Feb;77(2):412-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Oct;17(4):669-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1912491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1989 Jun;178(3):275-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24212893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1978 Sep 10;253(17):5892-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 May;96(1):130-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Oct;23(1):135-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8106009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1993 Aug;5(8):887-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8400871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Mar;98(3):859-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Sep;121(1):301-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jul;96(3):686-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Jul;46(4):383-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11485196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 May 5;268(5211):675-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7732376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Aug;7(8):1319-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7549487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Feb;77(2):418-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 Sep;12(9):3497-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8253076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1974 Feb;53(2):319-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16658699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Sep;106(1):211-215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Aug;102(4):1347-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8278552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8602-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1924320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Feb;3(2):315-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8220446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 May 15;16(10):2554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9184203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:509-540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012299</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
<settlement>
<li>College Park (Maryland)</li>
</settlement>
<orgName>
<li>Université du Maryland</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Coleman, G D" sort="Coleman, G D" uniqKey="Coleman G" first="G D" last="Coleman">G D Coleman</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Zhu, B" sort="Zhu, B" uniqKey="Zhu B" first="B" last="Zhu">B. Zhu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004668 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004668 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11351097
   |texte=   Phytochrome-mediated photoperiod perception, shoot growth, glutamine, calcium, and protein phosphorylation influence the activity of the poplar bark storage protein gene promoter (bspA).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11351097" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020